Skip navigation

The British Violin Making Association held its annual Maker’s day on 3rd March in the Old Sessions House in Clerkenwell, London.

P1010334

 

It was noisy, crowded and hugely enjoyable. I only managed to take a few photographs, but I hope they’ll give a flavour of the day.

 

Andreas Pahler (in the maroon apron), who founded Alpentonholz, brought some fine tonewood to sell.

P1010336

 

More than 40 makers of violins, violas, cellos, viols and bows were showing their work.

P1010338

 

Christopher Jones, who plays in the Gildas Quartet, tries out a violin – one of mine, as it happens.

P1010332

 

Stephen Thompson displayed four beautiful violin and cello bows.

P1010329

 

Emma Alter, violist and bowmaker, plays a pochette made by Mike Lavelle, with one of her own baroque bows.

P1010340

 

Click on a thumbnail for larger views.

Advertisement

A couple of years ago, Mark Bennett, who is a furniture maker in Malton, Yorkshire, with a genius for discovering beautiful and unusual wood, gave me this remarkable piece of willow. I knew that willow sometimes exhibits an attractive figure because I’d seen it in the backs of baroque cellos, which are sometimes made in that wood, but I’d never encountered anything quite as striking as this.

 

 

I wondered for a long time about how best to use it, toying with the idea that it might work as a guitar headstock. But willow is light and soft and I doubted that it would be strong enough. In the end, it seemed safer, if less imaginative, to use it to make a box.

 

 

It’s a simple rectangular design (10½ x 5¼ x 3½ inches) with a single tray in sycamore. The lid is a piece of wildly figured ash, hinged on brass pintles. It’s finished in clear French polish.

 

 
 

Larger photographs available by clicking on the thumbnails.

On a grey day earlier this week, I took some photographs of a recently completed steel string guitar just before handing it over to its new owner.

It’s based on a Martin OO model using plans drawn by the French guitar maker, Christophe Grellier.

 

 

I’d made a cutaway version of this guitar a couple of years ago (photographs here) but, this time, I modified the design to have the neck meet the body at the 12th rather than the 14th fret. This means moving the bridge about 30mm down the soundboard and narrowing the angle between the two arms of the X brace slightly.

 

 

The back and ribs of the guitar are made of English walnut and it has a Sitka spruce soundboard. The bindings, bridge and heel-cap are Rio rosewood and the rosette is spalted beech.

 

 

Click on any of the thumbnails below for a larger image.

Players of stringed instruments, particularly fretted stringed instruments, have been using capos to raise pitch and change key for a very long time. Some early English guittars, like one below, made in London in 1760¹, actually had holes drilled through the fingerboard and neck to allow a capo to be held in place with a screw and wing-nut.

 

 

Recently, I’ve been experimenting with another type of capo with a long history – the cejilla. Nowadays, they’re mainly used by flamenco guitarists, but a friend, who plays a copy of a nineteenth century guitar, thought that it would be nicer to have a capo that was plausibly of the same period as her instrument instead of a modern metal anachronism.

My first attempt to make one worked well enough as far as stopping the strings was concerned. But it looked clumsy because the peg head was too large. Worse, at least from the player’s point of view, the sharp corners were uncomfortable for the left hand.

 

 

So for the second one, I substituted a smaller peg from a half-size violin and softened the edges of the cejilla with a tapering chamfer. It looks better, I think, and I hope it will be more comfortable to use.

 

 

Cejillas aren’t difficult to make as long as you have a peg shaver and a matching tapered reamer available, and a bit of practice in persuading tuning pegs to turn smoothly in a tapered hole. This is everyday stuff for violin makers but guitar makers who fit worm and wheel tuning machines may not have the necessary kit. Mind you, since a pencil and an elastic band will do much the same thing, they may think cejillas are too much fuss anyway.

 

 

Anybody interested in the history of capos and the diverse and ingenious mechanisms that have been invented to provide what’s really just a moveable nut will enjoy the online Capo museum which has a wonderful collection (237 different designs).

 

As usual, click on the thumbnails for a more detailed view.

 

Footnotes

1. The early English guittar is in the collection of historic musical instruments at the Ashmolean Museum, Oxford

A couple of years ago, Wouter Hilhorst, an architect and luthier from Rotterdam, showed me some violin-making planes that he had carved from oak and boxwood. There are a few photographs of them here. Some of these planes were in the Japanese tradition, others miniature versions of western planes, but all had been made from a single block of wood.

I had made several small planes for instrument-making too, but I’d always used the Krenov sandwich technique, which I’ve written about at length before. (See here and here. A few days ago, I tried Wouter’s method using a small block of lignum vitae, which I reckoned would have the right properties of hardness and self-lubrication.

This is what I managed to come up with. The coin, £1 sterling, 22.5mm (≈7/8 inches) in diameter, is there to give an idea of scale; the long shavings prove that plane actually works.

The blade is a Japanese blade from Dictum, a generous gift from Wouter, and the wedge was fashioned out of a scrap of Rio rosewood.

This photograph of it with a No 4 smoother gives a sense of its diminutive size.

 
 

Click on a thumbnail to see larger images

The crypt is the oldest part of Winchester cathedral, dating from the 11th century. In a pleasing contrast, it contains something entirely modern – a mysterious life-size statue of a man standing upright, looking down at a pool of water held in his cupped hands and contemplating the reflections he sees there. The sculptor, Antony Gormley, created it from a plaster cast of his own body. After the cast had hardened, it was strengthened with glass fibre and covered in sheet lead. He talks about the technique here.

I’m grateful to Winchester-based photographer Joe Low (www.joelow.com), for letting me use the image below. He took this spectacular photograph of the statue in the winter when the crypt was flooded.

 

 

My friend Gill Robinson, a professional artist (and enthusiastic amateur guitarist) who also lives and works in Winchester, incorporated a witty allusion to Gormley’s statue when she designed a guitar label for me at the end of last year.

 

 

And for clients who might prefer something more traditional, she produced a scraperboard drawing of the west front of the cathedral.

 

 

Here’s one of Gill’s luminous landscapes – a watercolour of Welsh mountains. More of her work, including portraits of guitarists Mark Eden and Christopher Stell can be seen here.

 

Although many people prefer guitars made of dark coloured wood, lighter colours can make good looking instruments too. The back and ribs of this one are in satinwood (Chloroxylon swietenia), a dense hardwood from Sri Lanka rarely available nowadays but which in Georgian times was widely used as a veneer in furniture making. It’s hard, brittle and difficult to work with hand tools but it bends fairly easily and, because it doesn’t contain large pores, finishes well with French polish. As its name suggests, satinwood is strongly reflective and when polished takes on a shimmering, almost iridescent, quality (sometimes called chatoyance) that’s impossible to capture in a photograph.

The rosette and bridge decoration are burr ash and the bindings are Rio rosewood. The soundboard is European spruce.

As usual, click on the thumbnails for a larger view.

My son, who is an engineer working on the design of big diesel engines, tells me that it’s all too easy, especially with CAD software, to draw what seems a brilliant plan – only to meet derision when someone realises that it can’t be manufactured. You can imagine the sort of thing he means: a nut where there isn’t enough space to get a spanner in to tighten it; or the need for a long bolt in a place with insufficient clearance to get it into the hole.

As someone who works with wood, I enjoy teasing him with the complete opposite: something that self-evidently has been manufactured but that looks impossible. One example is the captive screw here. But that’s a bit of a cheat because it depends on exploiting the remarkable elastic properties of some woods when treated with heat and moisture. Better are the apparently impossible double and triple dovetails that I wrote about a year or so ago.

Here’s something in the same vein that can be sculpted out of wood with nothing more than a sharp chisel. Or, should you have one handy, a 5-axis CNC milling machine will do the job almost as well – see here.

For larger images, click on the thumbnails.

I had intended my previous post to be the last on the V joint. But, as I’ve just completed a guitar using the one that I made for the photographs, the series can end in a rather more satisfactory way by showing how it turned out on an actual instrument.

 

 
Here’s a close-up to show any sceptics that the small extra piece of wood glued on to the male part of the V really is invisible in the finished joint – scroll down to the last couple of photographs in this post if you can’t remember what I’m talking about.

 

Before gluing up the joint, it’s worth taking some trouble to make sure that the two parts fit perfectly. I put the neck in a vise and hold the headstock in place while checking for gaps with a 0.05mm feeler gauge. A bright light behind the joint also helps to reveal places where the fit is defective.

Here I’ve discovered that the sides of the V are a bit loose…

…while the shoulders are tight.

A couple of fine shavings taken off the shoulders of the headstock using a shooting board…

…improves the fit. As a final check, I rub chalk over the male part of the V joint, locate the female part in position and press the joint together hard.

Where the fit is perfect, chalk will be transferred evenly. High spots, on the other hand, show up as a blotch of chalk surrounded by unchalked wood. Here it looks as if there’s a high point on one side near the mouth of the V.

A small file takes off the bump…

…and a second chalk fitting shows that the joint fits pretty well all over, except for a small low spot on one side at the apex of the V. I decide that I can live with that.

The next step is to dust off the chalk, size all mating surfaces of the joint with hot dilute hide glue and leave them to dry.

This is the clamping arrangement that I use. It’s important that the compression force runs through the centre line of the headstock and bears directly on the shoulders of the joint. Chiselling off the front of the V where it projects through the headstock allows the bar of the clamp to sit close to the surface of the headstock.

Once I’m happy that I can get the clamp into exactly the right position, I un-clamp, brush medium strength hide glue onto all joint surfaces, re-clamp it and leave it undisturbed for a couple of hours.

Here it is after taking the clamp off. The shadow below the right hand shoulder of the joint indicates that the headstock is slightly twisted relative to the neck. I suspected that this would happen while I was making the final adjustments but decided that the inaccuracy would be small enough to plane it out after the joint was glued up.

And I’m pleased to say that it was.

The back of the joint looks a bit weird until the extra block is shaved off.

But these two necks show that it comes out all right in the end. Even with a magnifying glass it’s scarcely possible to see that extra wood has been added and after the final shaping it will be quite invisible.

That’s the last of the series of posts on making a V joint. Thanks to anyone who has followed the story this far. Before finishing, I ought to add that there are many variations in the way this joint can be cut. Some makers, for example, prefer to use a template for marking out rather than a ruler and dividers. Please add a comment if you know how to do it quicker or better.

Click on the thumbnails below for larger pictures.

Moving on from my previous post about marking out a V joint, it’s time to cut and trim it to shape.

First, I saw out the V in the headstock, keeping close to the lines but being careful not to saw past them. I try to be brave in sawing up to the line at the narrow end of the V because that’s the hardest part to clean up later.

Next, I stop to put a fresh edge on the chisel that I’m going to use. When it will slice through tissue paper, I reckon that it’s sharp enough.

I clean up the V, paring from both sides towards the middle. Final cuts are carried out with the chisel resting in the knife line that marked out the joint. A small square is useful to check that the sides of the V are flat. The most difficult part of the joint is the apex of the V but a slicing cut with the corner of the chisel will remove the last bit of waste.

Here’s the female part of the V joint in the headstock finished. It shouldn’t be necessary to touch it again.

Now I cut the male part of the joint on the neck, starting with the angled shoulders. I chisel out a ramp for the saw in the usual way…

… and then saw down to the V, keeping clear of the lines.

I mark the starting point of the cuts for the sides of the V on the endgrain…

… place the neck in a vise, tilting it so that the cut will be vertical, and …

saw off the sides of the V with a tenon saw.

I mark and keep the pieces that I’ve just sawn off. They’ll be useful later.

Now I clean up the V and its shoulders with a chisel, paring in from both sides as I did for the headstock.

Here it is almost finished.

The neck and headstock are now tested for fit. Below is the view from the fingerboard side of the neck.

And here’s the view from the back of the neck.

As you can see, there’s a problem at the apex of the V, where a shadow shows that the neck isn’t quite deep enough to fill up the whole of the female part of the joint in the headstock. (My stock of mahogany for necks is planed up at a thickness of 25mm which means that I always run into this difficulty.)

The solution is to add a little extra depth at the apex of the V. This is where the offcuts that I saved come in handy. I prepare a small piece from one of these…

and glue it on, taking care that the direction of the grain in the extra piece is orientated in the same way as the grain of the neck.

When the glue is fully hard…

… it’s sawn roughly to shape…

… and trimmed with a chisel. This addition will be invisible in the completed joint.

The last step is to make sure that everything fits to perfection before glueing up. I’ll discuss how to do that in the next post.

Click on any of the thumbnails below for larger pictures.

Although the geometry of the V joint is simple, it’s surprisingly hard to to visualise if you’ve only seen the joint on a finished guitar. So, in an attempt to make the marking out easier to understand, I’ve sketched it below.

As with all joints, the more precisely it’s marked out the better the final result. It’s crucial that the stock is sized and squared up accurately. The headstock needs to be 17 or 18mm thick to give a final thickness of 19 or 20mm after application of the veneer. The neck must be rather thicker – at least 24 or 25mm – or there won’t be enough wood at the apex of the male part of the V where it engages with the female cut out part in the headstock. The side view in the drawings of the joint above will show what I’m getting at. (Even 25mm thickness may not be enough for full engagement but I’ll show how I deal with that problem in my next post.)

It’s also important that the end grain edge at the lower end of the headstock is exactly square to the sides and faces. I ensure this with a low angle plane and a shooting board.

To begin the marking out, I scribe a centre line down both faces of the headstock with a marking gauge, being careful to scribe both faces from the same edge.

Then I mark the corners of the V with dividers, placing points 18mm either side of the centre line to form the base of the V, and a single point 42mm up from the base on the centreline to define the apex. In the photograph, the pinpoints are marked with chalk to make them more visible.

A single bevel marking knife is used to mark the sides of the V, keeping the ruler on the outside of the V. I try not to cut beyond the point of the V, particularly on the back of the headstock. It doesn’t matter so much on the front which will be covered with veneer later.

To ensure that the ruler doesn’t slip, it’s helpful to fix a strip of fine sandpaper to its underside with double-sided tape.

Here’s the V marked out on one face of the headstock. This process needs to be repeated on the other face so that both sides of the headstock are marked. I haven’t bothered to illustrate this.

Now it’s time to mark out the male part of the joint on the neck. Again, I start by scribing a centre line down both faces. Then I square a line across the upper face of the neck slightly more than 38mm from the end.

Using a sliding bevel set for the angle that I want the headstock to make with the neck (10º in this case, so the bevel is set to 80º) I scribe both sides of the neck from the line that I’ve just squared across it.

Then I square across the back of the neck at the point where the angled lines on the sides end. Finally, I mark out the V on both faces using dividers set to exactly the same dimensions that I used on the headstock. The only difference is that, when it comes to scribing the lines with the knife, I keep the ruler on the inside of the V.

Here’s the top of the neck marked out…

…and here’s the back. You can see that, on the back, the V is positioned slightly further down the neck than it is on the front.

In the next post, I’ll show how I cut out the joint.

You can see larger versions of the photographs by clicking on the thumbnails below.

There are two ways to create the angle between the headstock and the upper end of the neck of a guitar. One is to saw it out whole from a large piece of wood; the other is to make it out of two pieces using a glued joint – either the V shaped joint invented by the early guitar makers or a scarf joint. Of these options, the most rational is the scarf joint. It’s quicker and easier to execute than a V joint and wastes less wood than sawing out a neck and headstock whole. What’s more, it has a large glued surface so it doesn’t rely on nanometric accuracy for its strength.

Despite the obvious advantages of a scarf joint, the V joint has become something of a fetish among guitar makers. This is easy to defend where historical accuracy is concerned. After all, if you’re attempting a copy of a 19th century guitar, it’s desirable – even obligatory – to imitate the constructional methods of the original maker. But for a modern instrument, why prefer a weaker joint that takes longer to make?

The answer, I guess, is to show that you can. It’s not a million miles away from the Georgian cabinet makers who made the pins of their dovetails so skinny that they almost vanished at the narrow end, as you can see in this photograph of the drawer of the table at which I’m sitting as I write this post.

There’s no practical advantage either in strength or speed of production in cutting dovetails like this. Indeed, the reverse must be true. But they do provide an understated way by which makers can demonstrate that they care about seldom seen details and show off their skill.

I’ve found myself using a V joint for both these reasons. Here’s a copy of a 19th century guitar that I’ve mentioned in previous posts. The V joint in this instrument was present in the original and it seemed right to keep it.

On the other hand, the V joint in the guitar below could perfectly well have been a scarf joint. The guitarist for whom I made the instrument didn’t notice it until I drew it to her attention. Still, I enjoyed making it and, for reasons that I can’t properly explain, felt that it was worth the extra time and trouble.

I’ve just cut a couple more V joints for guitars that I’ve got planned for 2012 and, although instructions for making this joint already exist (see here, for example), I thought it might be useful if I kept a camera handy to document the process. In the next post, I’ll explain how I mark out the joint.

The chap in the photograph below, sporting a magnificent walrus moustache, was my great-great-grandfather. I don’t know exactly when he was born or when he died, but I do know that he worked as a cabinet maker in London and later in Plymouth during the second half of the 19th century.

 

 

Several pieces that he made are still in the family and among them is this decorative wall bracket. I’m not sure what it was meant for – probably a small clock or an ornament.

 

 

Quite apart from the pleasure of owning something made by a woodworking ancestor four generations earlier, I’ve always liked the bracket for its nicely judged proportions.

 

 

And I admire his neat solution to the problem of bringing everything to a point at the bottom of the bracket.

 

 

Needing a table for a narrow hallway a few years ago, I borrowed his design for a larger version in walnut.

 

Click on the thumbnails below if you’d like to see larger pictures.

In his book Violin Restoration (ISBN 0-9621861-0-4), Hans Weisshaar has a photograph of a self-adjusting jig that will hold violin bridges while they’re being planed. I was rather taken by the simplicity and ingenuity of the idea and I thought that I’d make one to see if it worked any better than the very basic holder, shown below, that I use at the moment.

The clever part about Weisshaar’s jig is that one side is free to rotate which means that it can adjust itself to fit bridges of different geometry, holding them all equally tightly. It’s easier to show how it works with a few photographs than it is to describe it.

Extra holes allow the swivelling side to be mounted closer to the fixed side to accommodate three-quarter and half size bridges.

A small block glued to the bottom helps to hold the jig against the edge of the bench or in a vice.

Although the device works well, it’s probably not going to be much use anyone except a violin maker. Still, I thought that the idea of using a freely moving arm or jaw to grasp pieces of wood when the sides aren’t parallel had wider applicability. You might be able to use a scaled up version for planing tapers on table legs, for example. And the accessory jaw for holding tapered shapes in a vice that’s shown on the Tools and Jigs page of this site (scroll down to the second item) draws on the same principle.

 
 
 

Larger versions of these photographs are available by clicking on the thumbnails below.

%d bloggers like this: